Skip to main content
  • Metamaterial is engineered material with exotic properties not found in nature. We explore directed assembly and synthesis of optical metamaterials, including moire metamaterials and colloidal metamaterials, for various applications. Roll-to-roll manufacturing is being developed for the cost-effective large-scale implementation of moire metamaterials. We have invented a class of optothermal tools to assemble colloidal particles into metamaterials in an arbitrary and scalable manner. Inline multiscale metrology is applied to measure structures, dynamics and properties of metamaterials. We further explore particles and metamaterials coupled with functional molecules and atomically thin materials for active devices.

  • Many of the basic molecular building blocks of life are chiral species, which are non-superimposable on their mirror images. Efficient synthesis, analysis and purification of chiral molecules are critical for applications ranging from medicine to space life detection. We develop a variety of chiroptical metadevices that exploit the tailorable optical properties of chiral metamaterials and metasurfaces to improve asymmetric synthesis, enantiodiscrimination and enantioselective separation of chiral molecules.

  • Optofluidic lab on a chip integrates compact optical components into micro/nanofluidic systems to enable interrogation and control of colloidal particles, biological cells and molecules at an unprecedented level. We develop a new class of optofluidic lab on a chip that exploits optical metamaterials, metasurfaces and plasmonics to bring healthcare diagnostics and therapy to underserved areas while advancing studies of the origin and rules of life.


We engage in interdisciplinary research to innovate optical nanotechnologies in health, life sciences, national security, energy, and manufacturingOur mission is to:

  • advance fundamental understanding of nanoscale light-matter interactions and opto-thermo-fluidics;
  • develop and apply optically active materials, devices and tools;
  • promote interdisciplinary trainings for students to understand and contribute to the multiple fields of engineering, science, and medicine.

Current projects in three coordinated research areas are supported by NIH, NSF, ONR, NASA, ARO, Beckman Foundation, 3M, and Exxonmobil. These projects advance basic sciences and applications in space life detection, mobile healthcare, early disease diagnostics, immunotherapy, pharmaceutical, light robotics, electronic warfare, clean energy, and Internet of Things. 

  Contact Information:

  Yuebing Zheng, Ph.D.
  Assistant Professor
  Department of Mechanical Engineering
  Materials Science and Engineering Program

  Texas Materials Institute
  The University of Texas at Austin
  204 E. Dean Keeton Street
  Austin, TX 78712, United States

  Phone: (512) 471-0228

Recent Publications

Featured Research

Opto-Thermoelectric Nanotweezers [Nature Photonics (2018)]

Thermophoretic Tweezers [ACS Nano (2017)]

Rewritable Nanophotonics [Nano Lett. 16 (2016) 7655]

Reversible Assembly [ACS Nano 10 (2016) 9659]

Bubble-Pen Lithography [Nano Lett. 16 (2016) 701]