Skip to main content
  • We develop and apply nanoscale measurements and control to advance fundamental understanding of light-matter interactions and to create designer materials with unprecedented performances. We develop assembly techniques to create supramolecules and colloidal superstructures at high throughput and low cost. We carry out simultaneous measurements of structures, dynamics and functions of materials down to the single-nanoparticle and single-molecule levels.

  • With the capability of surface plasmons in manipulating light beyond the diffraction limit, molecular plasmonics bridges size mismatch between light and molecules to merge both at the nanoscale. We aim to improve the fundamental understanding of the plasmon-enhanced light-matter interactions using the single-nanoparticle and single-molecule measurements. We leverage our improved understanding to develop novel optical materials and devices.

  • Plasmofluidics exploits micro/nanoscale light and fluid manipulations by plasmonics and microfluidics to innovate lab on a chip. We aim to develop (i) point-of-care biomedical devices that will bring healthcare diagnostics to underserved areas while advancing study in life sciences and (ii) nanofactories that can optically assemble designer materials and devices with colloidal particles as building blocks. 


We exploit the synergy among nanophotonics, microfluidics, and colloid and surface chemistry to innovate optical technologies in health, energy, manufacturing, and national securityOur mission is to:

  • improve fundamental understanding of light-matter interactions down to the single-nanoparticle and single-molecule levels;
  • develop optically active materials, devices and tools for engineering applications and scientific research;
  • promote interdisciplinary trainings for students to understand and to contribute to the multiple fields of engineering, science, and medicine.

Featured Research

Nanoparticle Assembly [Lin et al. ACS Nano 2016]

Bubble-Pen Lithography [Lin et al. Nano Lett. 2016]

Moire Metasurfaces [Chen et al. ACS Nano 2015]